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Quantum Thermal Effect of Dirac Particles
in a Nonuniformly Rectilinearly Accelerating
Black Hole With Electric Charge, Magnetic
Charge, and Cosmological Constant
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The Hawking radiation of Dirac particles in an arbitrarily rectilinearly accelerating
Kinnersley black hole with electromagnetic charge and cosmological constant is inves-
tigated by using the generalized tortoise coordinate transformation. Both the location
and the temperature of the event horizon depend on the time and the polar angle. The
Hawking thermal radiation spectrum of Dirac particles is also derived.

KEY WORDS: Hawking effect; Dirac equation; nonstationary black hole; generalized
tortoise coordinate transformation.

1. INTRODUCTION

An important subject of black hole physics is to reveal the thermal properties
of various black holes (Hawking, 1974, 1975). The last decade has witnessed much
progress in investigating the thermal properties of scalar fields or Dirac particles in
the stationary axisymmetry black holes (Damour and Ruffini, 1976; Liu and Xu,
1980; Xu, 1983; Xu and Shen, 1982; Zhaoet al., 1981). In the study of the Hawking
evaporation of the nonstationary black holes, the method of the generalized tortoise
coordinate transformation (GTCT) suggested by Zhao and Dai (1991) has been
applied to investigate the Hawking thermal radiation of scalar particles in some
nonuniformly accelerating black holes (Luo and Zhao, 1993; Zhaoet al., 1995;
Zhuet al., 1994a) and in the nonuniformly accelerating Kerr black hole (Sunet al.,
1995a,b; Wu and Zhao, 1993).

However, it is very difficult to investigate the quantum thermal effect of Dirac
particles in the nonstationary black hole. The difficulty lies in the nonseparability of

1 Institute of Particle Physics, Hua-Zhong Normal University, Wuhan, People’s Republic of China.
2 To whom correspondence should be addressed at Institute of Particle Physics, Hua-Zhong Normal
University, 430079 Wuhan, People’s Republic of China; e-mail: sqwu@iopp.ccnu.edu.cn.

641

0020-7748/02/0400-0641/0C© 2002 Plenum Publishing Corporation



P1: GDX/GXB/GRA/LOV/GIR P2: GCO/FZN/GCY Tally: GCO/FNV QC:

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370722 April 8, 2002 9:48 Style file version Nov. 19th, 1999

642 Wu and Cai

the Chandrasekhar–Dirac equation (Chandrasekhar, 1983; Page, 1976) in the most
general space-times. The Hawking radiation of Dirac particles in some nonstatic
black holes has so far been studied in Li and Zhao (1993), Ma and Yang (1993),
Zhanget al. (1999), and Zhuet al. (1994b).

In this paper, we deal with the Hawking effect of Dirac particles in a nonspher-
ically symmetric and nonstationary Kinnersley black hole with electric charge,
magnetic charge, and cosmological constant (Kinnersley, 1969; Wang and Tang,
1986). By making use of the GTCT method, we obtain the equation which deter-
mines the event horizon of the Kinnersley black hole. The event horizon equation
derived by the limiting form of Dirac equation near the event horizon is exactly the
same as those given by the null hypersurface which is not spherically symmetric
(Luo and Zhao, 1993; Zhaoet al., 1995; Zhuet al., 1994a). Then we turn to the
second order form of the Dirac equation. With the aid of a GTCT, we adjust the
temperature parameter in order that each component of Dirac spinors satisfies a
simple wave equation after being taken limits approaching the event horizon.

We show that both the shape and the Hawking temperature of the event horizon
of Kinnersley black hole depend on not only the time, but also on the angle. The
location and the temperature coincide with those obtained by investigating the
Hawking effect of Klein–Gordon particles in the accelerating Kinnersley black
hole (Luo and Zhao, 1993; Zhaoet al., 1995; Zhuet al., 1994a).

2. DIRAC EQUATION

The metric of a nonuniformly rectilinearly accelerating Kinnersley black hole
with electric chargeQ, magnetic chargeP, and cosmological constant3 is given
in the advanced Eddington–Finkelstein coordinate system by Kinnersley (1969)
and Wang and Tang (1986).

ds2 = 2dv(Gdv− dr − r 2 f dθ )− r 2(dθ2+ sin2 θ dϕ2) (1)

where 2G = 1− 2M
r + Q2+P2

r 2 − 4a cosθ Q2+P2

r − 2ar cosθ − r 2 f 2− 3
3 r 4, f =

−a sinθ . In the above, the parametera = a(v) is the magnitude of acceleration,
the massM(v), and the chargesQ(v), P(v) of the hole are functions of timev.

We choose a complex null-tetrad{l , n, m, m̄} such thatl · n = −m · m̄= 1.
Thus the covariant one-forms can be written as

l = dv, n = Gdv− dr − r 2 f dθ ,
(2)

m = −r√
2

(dθ + i sinθ dϕ), m̄= −r√
2

(dθ − i sinθ dϕ).

and their corresponding directional derivatives are

D = − ∂
∂r

, 1 = ∂

∂v
+ G

∂

∂r
,



P1: GDX/GXB/GRA/LOV/GIR P2: GCO/FZN/GCY Tally: GCO/FNV QC:

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370722 April 8, 2002 9:48 Style file version Nov. 19th, 1999

Quantum Thermal Effect of Dirac Particles 643

δ = 1√
2r

(
−r 2 f

∂

∂r
+ ∂

∂θ
+ i

sinθ

∂

∂ϕ

)
, (3)

δ̄ = 1√
2r

(
−r 2 f

∂

∂r
+ ∂

∂θ
− i

sinθ

∂

∂ϕ

)
.

Inserting for the following relations among the Newman–Penrose (1962)
spin-coefficients3

ε − ρ = −1

r
, π̃ − α = cotθ

2
√

2r
−
√

2 f,

(4)

µ− γ = G

r
+ G,r

2
, β − τ = cotθ

2
√

2r
− f√

2
,

into the spinor form of the coupled Chandrasekhar–Dirac equation (Chandrasekhar,
1983; Page, 1976), which describes the dynamic behavior of spin-1/2 particles,
namely

(D + ε − ρ)F1+ (δ̄ + π̃ − α)F2 = iµ0√
2

G1,

(1+ µ− γ )F2+ (δ + β − τ )F1 = iµ0√
2

G2,

(5)

(D + ε∗ − ρ∗)G2− (δ + π̃∗ − α∗)G1 = iµ0√
2

F2,

(1+ µ∗ − γ ∗)G1− (δ̄ + β∗ − τ ∗)G2 = iµ0√
2

F1,

whereµ0 is the mass of Dirac particles, one obtains

−D1F1+ 1√
2r

(L− r 2 fD2)F2 = iµ0√
2

G1,(
∂

∂v
+ GD1+ G,r /2

)
F2+ 1√

2r
(L† − r 2 fD1)F1 = iµ0√

2
G2,

(6)
−D1G2− 1√

2r
(L† − r 2 fD2)G1 = iµ0√

2
F2,(

∂

∂v
+ GD1+ G,r /2

)
G1− 1√

2r
(L− r 2 fD1)G2 = iµ0√

2
F1,

in which we have defined operators

Dn = ∂

∂r
+ n

r
, L = ∂

∂θ
+ 1

2
cotθ − i

sinθ∂ϕ
,

L† = ∂

∂θ
+ 1

2
cotθ + i

sinθ

∂

∂ϕ
.

3 Here and hereafter, we denoteG,r = dG/dr , etc.
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By substituting

F1 = 1√
2r

P1, F2 = P2, G1 = Q1, G2 = 1√
2r

Q2,

into Eq. (6), they have the form

−D0P1+ (L− r 2 fD2)P2 = iµ0r Q1,

r 2

(
2
∂

∂v
+ 2GD1+ G,r

)
P2+ (L† − r 2 fD0)P1 = iµ0r Q2,

(7)
−D0Q2− (L† − r 2 fD2)Q1 = iµ0r P2,

r 2

(
2
∂

∂v
+ 2GD1+ G,r

)
Q1− (L− r 2 fD0)Q2 = iµ0r P1.

3. EVENT HORIZON

An apparent fact is that the Chandrasekhar–Dirac equation (7) could be satis-
fied by identifyingQ1, Q2 with P∗2 ,−P∗1 , respectively. So one may deal with a pair
of componentsP1, P2 only. Although Eq. (7) cannot be decoupled, to deal with
the problem of Hawking radiation, one may concern about the behavior of Eq. (7)
near the horizon only. As the space-time we consider at present has a symmetry
aboutϕ-axis, we can introduce the generalized tortoise coordinate transformation
(Zhao and Dai, 1991)

r∗ = r + 1

2κ
ln[r − r H (v, θ )],

(8)
v∗ = v − v0, θ∗ = θ − θ0,

wherer H is the location of the event horizon,κ is an adjustable parameter and
is unchanged under tortoise transformation. Both parametersv0 andθ0 are arbi-
trary constants. From formula (8), we can deduce some useful relations for the
derivatives as follows:

∂

∂r
=
[
1+ 1

2κ(r − r H )

]
∂

∂r∗
,

∂

∂v
= ∂

∂v∗
− r H,v

2κ(r − r H )

∂

∂r∗
,

∂

∂θ
= ∂

∂θ∗
− r H,θ

2κ(r − r H )

∂

∂r∗
.
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Under the transformation (8), Eq. (7) with regards to (P1, P2) can be reduced
to the following limiting form near the event horizon4

∂

∂r∗
P1+

(
r H,θ + r 2

H f
) ∂
∂r∗

P2 = 0,

(9)

−(r H,θ + r 2
H f
) ∂
∂r∗

P1+ 2r 2
H (G− r H,v)

∂

∂r∗
P2 = 0,

after being taken limitsr → r H (v0, θ0), v→ v0, andθ → θ0. A similar form holds
for Q1, Q2.

If the derivatives ∂
∂r∗

P1 and ∂
∂r∗

P2 in Eq. (9) do not be equal to zero, the exis-
tence condition of nontrial solutions forP1 andP2 is that the determinant of Eq. (9)
vanishes, which gives the following equation to determine the location of horizon

2G− 2r H,v + r 2
H f 2+ 2 f r H,θ +

r 2
H,θ

r 2
H

= 0. (10)

The event horizon equation (10) can be inferred from the null hypersurface condi-
tion, gi j ∂i F∂ j F = 0, andF(v, r, θ ) = 0, namelyr = r (v, θ ). The location of the
event horizon is in accord with that obtained in the case of discussion about the
thermal effect of Klein–Gordon particles in the same space-time (Luo and Zhao,
1993; Zhaoet al., 1995; Zhuet al., 1994a). It follows thatr H depends not only
onv, but also onθ . So the location of the event horizon and the shape of the black
hole change with time.

4. HAWKING TEMPERATURE

To investigate the Hawking radiation of spin-1/2 particles, one may only deal
with the behavior ofP1, P2 components of Dirac equation near the event horizon
because one can set

Q2 = −P∗1 , Q1 = P∗2 . (11)

A direct calculation gives the second-order form of Dirac equation for the two-
component spinor (P1, P2)[

r 2

(
2
∂

∂v
+ 2GD0+ G,r

)
D0+ (L− r 2 fD−1)(L† − r 2 fD0)

]
P1

+ r 2

[
−
(

2
∂

∂v
+ 2GD0+ G,r

)
(L− r 2 fD2)

+ (L− r 2 fD1)

(
2
∂

∂v
+ 2GD1+ G,r

)]
P2 = µ2

0r
2P1, (12)

4 Throughout the paper, we make a convention that all coefficients in the front of each derivatives term
take values at the event horizon when a GTCT is made and followed by taking limits approaching the
event horizon.
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and [
r 2D1

(
2
∂

∂v
+ 2GD1+ G,r

)
+ (L† − r 2 fD1)(L− r 2 fD2)

]
P2

+ [D−1(L† − r 2 fD0)− (L† − r 2 fD1)D0] P1 = µ2
0r

2P2. (13)

Given the GTCT in Eq. (8) and after some tedious calculations, the limiting
form of Eqs. (12) and (13), whenr approachesr H (v0, θ0), v goes tov0 andθ goes
to θ0, reads[

A

2κ
+ 2r 2

H (2G− r H,v)+ 2r 4
H f 2+ 2 f r H,θr

2
H

]
∂2

∂r 2∗
P1+ 2r 2

H

∂2

∂r∗∂v∗
P1

− 2
(

f r 2
H + r H,θ

) ∂2

∂r∗∂θ∗
P1+

[−A+ r 2
H G,r + r 3

H f 2− r 2
H f cotθ0

− r 2
H f,θ − (r H f + cotθ0)r H,θ − r H,θθ

] ∂
∂r∗

P1+ 2r 2
H

[
r 2

H f,v

+G,θ − GrH,θ

r H
− r 2

H f

(
G,r + r H,v − 2G

r H

)]
∂

∂r∗
P2 = 0, (14)

and [
A

2κ
+ 2r 2

H (2G− r H,v)+ 2r 4
H f 2+ 2 f r H,θr

2
H

]
∂2

∂r 2∗
P2+ 2r 2

H

∂2

∂r∗∂v∗
P2

− 2
(

f r 2
H + r H,θ

) ∂2

∂r∗∂θ∗
P2+

[−A+ 3r 2
H G,r + 2r H (2G− r H,v)

+ 5r 3
H f 2− r 2

H f,θ − r 2
H f cotθ0+ (3 f r H − cotθ0)r H,θ − r H,θθ

]
× ∂

∂r∗
P2+ r H,θ

r H

∂

∂r∗
P1 = 0. (15)

With the aid of the event horizon equation (10), we know that the coefficient
A is an infinite limit of 0

0 type. By use of the L’ Hˆospital rule, we get the following
result

A = lim
r→r H (v0,θ0)

2r 2(G− r H,v)+ r 4 f 2+ 2 f r 2r H,θ + r 2
H,θ

r − r H

= 2r 2
H G,r + 4r H (G− r H,v)+ 4r 3

H f 2+ 4 f r Hr H,θ

= 2r 2
H G,r + 2r 3

H f 2− 2r 2
H,θ

r H
. (16)
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Now let us select the adjustable parameterκ in Eqs. (14) and (15) such that

r 2
H ≡

A

2κ
+ 2r 2

H (2G− r H,v)+ 2r 4
H f 2+ 2 f r 2

Hr H,θ

= r 3
H G,r + r 4

H f 2− r 2
H,θ

κr H
+ 2Gr2

H + r 4
H f 2− r 2

H,θ , (17)

which means the temperature of the horizon is

κ = r 2
H G,r + r 3

H f 2− r 2
H,θ /r H

r 2
H (1− 2G)− r 4

H f 2+ r 2
H,θ

. (18)

Such a parameter adjustment can make Eqs. (14) and (15) reduce to

∂2

∂r 2∗
P1+ 2

∂2

∂r∗∂v∗
P1− 2

(
f + r H,θ

r 2
H

)
∂2

∂r∗∂θ∗
P1+

[
r H f 2− G,r

− f,θ − f cotθ0− (r H f + cotθ0)
r H,θ

r 2
H

+ 2r 2
H,θ

r 3
H

− r H,θθ

r 2
H

]
∂

∂r∗
P1

+ 2

[
G,θ + r 2

H f,v − GrH,θ

r H
− r 2

H f

(
G,r + r H,v − 2G

r H

)]
∂

∂r∗
P2 = 0, (19)

and

∂2

∂r 2∗
P2+ 2

∂2

∂r∗∂v∗
P2− 2

(
f + r H,θ

r 2
H

)
∂2

∂r∗∂θ∗
P2+

[
5r H f 2+ G,r

+ 4G− 2r H,v

r H
− f,θ − f cotθ0+ (3 f r H − cotθ0)

r H,θ

r 2
H

+ 2r 2
H,θ

r 3
H

− r H,θθ

r 2
H

]
∂

∂r∗
P2+ r H,θ

r 3
H

∂

∂r∗
P1 = 0. (20)

Using Eq. (9), Eqs. (19) and (20) can be recast into the following standard
wave equation near the horizon in an united form

∂2

∂r 2∗
9 + 2

∂2

∂r∗∂v∗
9 − 2C1

∂2

∂r∗∂θ∗
9 + 2C2

∂

∂r∗
9 = 0, (21)

whereC1, C2 will all be regarded as finite real constants,

C1 = f + r H,θ

r 2
H

,

2C2 = −r H f 2− G,r − f,θ − f cotθ0− (r H f + cotθ0)
r H,θ

r 2
H

+ 2r 2
H,θ

r 3
H

− r H,θθ

r 2
H
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− r 2
H f + r H,θ

(G− r H,v)r 3
H

[
GrH,θ − r H G,θ − r 3

H f,v + r 2
H f (G,r r H + r H,v − 2G)

]
for 9 = P1, and

2C2 = 3r H f 2− f,θ − f cotθ0+ G,r + 4G− 2r H,v

r H

+ (2 f r H − cotθ0)
r H,θ

r 2
H

+ r 2
H,θ

r 3
H

− r H,θθ

r 2
H

for 9 = P2.

5. THERMAL RADIATION SPECTRUM

Now separating variable as follows

9 = R(r∗)2(θ∗) e−iωv∗+imϕ

and substituting this into Eq. (21), one gets

2′ = λ2,
(22)

R′ = 2(iω − C0)R,

whereλ is a real constant introduced in the separation variables,C0 = C2− λC1.
The solutions are

2 = eλθ∗ ,
(23)

R = e2(iω−C0)r∗ ; R0.

The ingoing wave and the outgoing wave to Eq. (21) are

9in = e−iωv∗+imϕ+λθ∗ ,
(24)

9out = e−iωv∗+imϕ+λθ∗ e2(iω−C0)r∗ , (r > r H ).

Near the event horizon, we have

r∗ ∼ 1

2κ
ln(r − r H ).

Clearly, the outgoing wave9out(r > r H ) is not analytic at the event horizonr = r H ,
but can be analytically extended from the outside of the hole into the inside of the
hole through the lower complexr -plane

(r − r H )→ (r H − r ) e−iπ

to

9̃out = e−iωv∗+imϕ+λθ∗ e2(iω−C0)r∗ eiπC0/κ eπω/κ , (r < r H ). (25)
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So the relative scattering probability of the outgoing wave at the horizon is
easily obtained ∣∣∣∣9out

9̃out

∣∣∣∣2 = e−2πω/κ . (26)

According to the method suggested by Damour and Ruffini (1976) and de-
veloped by Sannan (1988), the thermal radiation Fermionic spectrum of Dirac
particles from the event horizon of the hole is given by

〈N(ω)〉 = 1

eω/TH + 1
, (27)

with the Hawking temperature being

TH = κ

2π
,

whose obvious expression is

TH = 1

4πr H

× Mr H − r 3
H a cosθ0+ (2r H a cosθ0− 1)(Q2+ P2)− 3

3 r 4
H − r 2

H,θ

Mr H + r 3
H a cosθ0+ (2r H a cosθ0− 1/2)(Q2+ P2)− 3

6 r 4
H +

r 2
H,θ

2

.

(28)

It follows that the temperature depends not only on the time, but also on the
angleθ because it is determined by the surface gravityκ, a function ofv andθ .
The temperature is in consistence with that derived while investigating the thermal
radiation of Klein–Gordon particles (Luo and Zhao, 1993; Zhaoet al., 1995; Zhu
et al., 1994a).

6. CONCLUSIONS

Equations (10) and (18) give the location and the temperature of event horizon
of the hole, which depend not only on the advanced timev but also on the polar
angleθ. Equation (27) shows the thermal radiation spectrum of Dirac particles in
an arbitrarily rectilinearly accelerating Kinnersley black hole.

In conclusion, we have studied the Hawking radiation of Dirac particles in
an arbitrarily accelerating Kinnersley black hole whose mass and charges change
with time. The Chandrasekhar–Dirac equation cannot be decoupled in the most
general black hole background, however, under the generalized tortoise coordinate
transformation, the limiting form of its corresponding second-order equation takes
the standard form of wave equation near the event horizon, to which separation of
variables is possible.
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Both the location and the temperature of the event horizon of the accelerating
Kinnersley black hole depend on the time and the angle. They are just the same as
those obtained in the discussion on thermal radiation of Klein–Gordon particles
in the same space-time.

APPENDIX: NEWMAN–PENROSE COEFFICIENTS

The complex null-tetrad{l , n, m, m̄} that satisfies the orthogonal conditions
l · n = −m · m̄= 1 in the Kinnersley black hole is chosen as

l = dv, n = Gdv− dr − r 2 f dθ ,

m = −r√
2

(dθ + i sinθdϕ), m̄= −r√
2

(dθ − i sinθ dϕ). (A1)

It is not difficult to determine the twelve Newman–Penrose complex coeffi-
cients (Newman and Penrose, 1962) in the above null-tetrad as follows

κ̃ = λ̃ = σ = ε = 0, ρ = 1

r
, µ = G

r
, γ = −G,r /2, τ = −π̃ = f√

2
,

α = − cotθ

2
√

2r
+ f√

2
, β = cotθ

2
√

2r
, ν = 1√

2r
[(2rG − r 2G,r ) f + r 2 f,ν + G,θ ].
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