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Quantum Thermal Effect of Dirac Particles
in a Nonuniformly Rectilinearly Accelerating
Black Hole With Electric Charge, Magnetic
Charge, and Cosmological Constant
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The Hawking radiation of Dirac particles in an arbitrarily rectilinearly accelerating
Kinnersley black hole with electromagnetic charge and cosmological constant is inves-
tigated by using the generalized tortoise coordinate transformation. Both the location
and the temperature of the event horizon depend on the time and the polar angle. The
Hawking thermal radiation spectrum of Dirac particles is also derived.
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1. INTRODUCTION

An important subject of black hole physics is to reveal the thermal properties
of various black holes (Hawking, 1974, 1975). The last decade has witnessed much
progress in investigating the thermal properties of scalar fields or Dirac particles in
the stationary axisymmetry black holes (Damour and Ruffini, 1976; Liu and Xu,
1980; Xu, 1983; Xu and Shen, 1982; Ziet@l., 1981). In the study of the Hawking
evaporation of the nonstationary black holes, the method of the generalized tortoise
coordinate transformation (GTCT) suggested by Zhao and Dai (1991) has been
applied to investigate the Hawking thermal radiation of scalar particles in some
nonuniformly accelerating black holes (Luo and Zhao, 1993; Zitaal., 1995;
Zhuetal, 1994a) and in the nonuniformly accelerating Kerr black hole S ah,
1995a,b; Wu and Zhao, 1993).

However, it is very difficult to investigate the quantum thermal effect of Dirac
particles in the nonstationary black hole. The difficulty lies in the nonseparability of
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the Chandrasekhar-Dirac equation (Chandrasekhar, 1983; Page, 1976) in the most
general space-times. The Hawking radiation of Dirac particles in some nonstatic
black holes has so far been studied in Li and Zhao (1993), Ma and Yang (1993),
Zhanget al. (1999), and Zhwet al. (1994b).

Inthis paper, we deal with the Hawking effect of Dirac particles in a nonspher-
ically symmetric and nonstationary Kinnersley black hole with electric charge,
magnetic charge, and cosmological constant (Kinnersley, 1969; Wang and Tang,
1986). By making use of the GTCT method, we obtain the equation which deter-
mines the event horizon of the Kinnersley black hole. The event horizon equation
derived by the limiting form of Dirac equation near the event horizon is exactly the
same as those given by the null hypersurface which is not spherically symmetric
(Luo and Zhao, 1993; Zhaet al., 1995; Zhuet al, 1994a). Then we turn to the
second order form of the Dirac equation. With the aid of a GTCT, we adjust the
temperature parameter in order that each component of Dirac spinors satisfies a
simple wave equation after being taken limits approaching the event horizon.

We show that both the shape and the Hawking temperature of the event horizon
of Kinnersley black hole depend on not only the time, but also on the angle. The
location and the temperature coincide with those obtained by investigating the
Hawking effect of Klein—Gordon particles in the accelerating Kinnersley black
hole (Luo and Zhao, 1993; Zhast al., 1995; Zhuet al,, 1994a).

2. DIRAC EQUATION

The metric of a nonuniformly rectilinearly accelerating Kinnersley black hole
with electric charge, magnetic charg®, and cosmological constantis given
in the advanced Eddington—Finkelstein coordinate system by Kinnersley (1969)
and Wang and Tang (1986).

ds? = 2dv(Gdv — dr —r2f do) — r?(de? + sir? 6 de?) 1)

where G =1- 24 4 % —4acosew —2arcos) —r2f2— 4r4 f =
—asing. In the above, the parametar= a(v) is the magnitude of acceleration,
the masaM (v), and the chargeQ(v), P(v) of the hole are functions of time

We choose a complex null-tetrdld n, m, m} such that -n= —m-m= 1.
Thus the covariant one-forms can be written as

| =dv, n=Gdv—dr —r?fdog,

@
—r |
m = —(df + i sin6 dy), m = —(dé — i sind dg).
ﬁ( ®) ﬁ( ?)
and their corresponding directional derivatives are
a a a

T 9v ar
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1 a a i 0
§= ——r’f—+ —4+ ——), 3
J2r < or +89+S|n9 3(p> @)
R P i 0
Vo ar 30 sinfap)
Inserting for the following relations among the Newman—Penrose (1962)
spin-coefficients
1 cotd
c—p=-I, Foa= _ V2,
P r 2J2r
G N G, 5 coto f
- = - A 1 — T = —F= — =,
into the spinor form of the coupled Chandrasekhar—Dirac equation (Chandrasekhar,

1983; Page, 1976), which describes the dynamic behavior of ggipdrticles,
namely

4)

(D+e—p)Fi+ (@ +7 —a)Fa = —2Gy,

A+p—y)Fo+@E+B-1)F1L=
(5)
(D+e" —p"Go -+ 7" —a*)Gy = —F

(A+u* —y)G1— (6 +p* —1")Gy =

wherewg is the mass of Dirac particles, one obtains _
~DiFy + %(ﬁ — 12 Dy)F, = '%Gl,
(%+Gm+adga+j%wt4%mwp%%ez o
—D1Gy — %(ﬂ —r2fD,)Gy = %FZ,
<88_v +GD; + G,r/Z)Gl - %(ﬁ —r2fDy)Gy = i%Fl,

in which we have defined operators

0 n 0 1 i
D, -, L=—+4+ = cotf — — ,
: + *3 sindag

Toor P)
+1CO + ! 9
2 Sind 9g"

0
==
a0

3Here and hereafter, we dendg = dG/dr, etc.
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By substituting
Fi1= 1 P, Fo=P,, G1=Q1, Gy= 1 Q
1= \/zr 1y 2 = 2y 1= 1 2 = \/ir 2y

into Eq. (6), they have the form
—DoPy+ (L — 12 D2)P, = i ol Qu,

ad .
r2<28—v + 2GD; + G,r>|:)2+(£]L — rszo)Pl = iuorQo,

R _ (7)
~DoQp — (LT —12fDp) Q1 = i juor P,

0 .
r2<25 +2GD: + G,r)Ql — (L —r?fDg)Q; = i ol Py.

3. EVENT HORIZON

An apparent fact is that the Chandrasekhar—Dirac equation (7) could be satis-
fied by identifyingQ1, Q2 with P}, — P}, respectively. So one may deal with a pair
of components;, P, only. Although Eg. (7) cannot be decoupled, to deal with
the problem of Hawking radiation, one may concern about the behavior of Eq. (7)
near the horizon only. As the space-time we consider at present has a symmetry
aboutg-axis, we can introduce the generalized tortoise coordinate transformation
(Zhao and Dai, 1991)

1
re=r+—In[r —ry(v,0)],
2% ®)

V, =V — Vp, 9*:9_90,

wherery is the location of the event horizon,is an adjustable parameter and

is unchanged under tortoise transformation. Both paramegeandd, are arbi-

trary constants. From formula (8), we can deduce some useful relations for the
derivatives as follows:

N PO 0
ar 2(r —ry) | ory’

o 9 fiy 0
v av, 2 —ry)ar,’
a lH,0 a

30 90,  2u(r —ry)ar,
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Under the transformation (8), Eq. (7) with regardsRg,(P,) can be reduced
to the following limiting form near the event horizbn

0
P, =0,

(o +75 1)

or ©

ad a
—(ruo +13f)=—Pi+2r3(G —rpv)—P> =0,
or, ar,

after being taken limits — ry (vo, 6g), v — Vo, andd — 6. A similar form holds
for Q1, Q.

If the der|vat|ves— P and;- C‘ P, in Eq. (9) do not be equal to zero, the exis-
tence condition of nontrlal solutlons f&% andP; is that the determinant of Eq. (9)
vanishes, which gives the following equation to determine the location of horizon

2

2G—2rH,V+rﬁf2+2frH,9+r:'—f=o. (10)

H
The event horizon equation (10) can be inferred from the null hypersurface condi-
tion, g/ 3 Fd; F = 0, andF (v, r, #) = 0, namelyr = r (v, ). The location of the
event horizon is in accord with that obtained in the case of discussion about the
thermal effect of Klein—Gordon particles in the same space-time (Luo and Zhao,
1993; Zhacet al., 1995; Zhuet al,, 1994a). It follows that depends not only
onv, but also orf. So the location of the event horizon and the shape of the black
hole change with time.

4. HAWKING TEMPERATURE

To investigate the Hawking radiation of spiriZlparticles, one may only deal
with the behavior ofP;, P, components of Dirac equation near the event horizon
because one can set

Qe=-P/, Q=P (11)

A direct calculation gives the second-order form of Dirac equation for the two-
component spinoriy, P;)

3
[r2<2a—v +2GDy + G,r>Do + (L —r2tD_y) (Lt - erDo)} P
2 0 2
+r [—(28—V+2GD0+G,r>(c—r fDy)
3
—i—(/J—r fDl) (2—+ZGD1+G >] Mor Pl, (12)

4Throughout the paper, we make a convention that all coefficients in the front of each derivatives term
take values at the event horizon when a GTCT is made and followed by taking limits approaching the
event horizon.
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and

3
[r2D1<2a—v +2GD1 + G,r) + (LT —r2f D) (L — rszg)} P,

+[D_a(L" = r?fDg) — (LT — 12 Dy)Do] Py = pfr?Pa. (13)

Given the GTCT in Eq. (8) and after some tedious calculations, the limiting
form of Egs. (12) and (13), whanapproachesy (Vo, 6p), V goes tovg andé goes
to 0y, reads

A 32 2
— 4+ 2r3(2G —r 23 24 2fryord | — Py + 212
|: +2ri( Hy) +2rg £9+2Fryerg a2 1+ Har v,

P
2K !

2

or,d6,

—2(frg +rue) Po+[-A+r13G, +13 f2—r7 f cotoy

0]
—rﬁ fyg — (rH f +C0t90)r|-|'9 — rvag] ar P+ Zrﬁ |:rﬁ f,v
Gr fuy —2G\1 @
+Gy — 0 —raf(G,r + ”7> — P, =0, (14)
'y 'y | or,

and

A 19 i
[E T2 — ) + 2 14 2Mrwrh | 5P 20 g P

2

—2(frg +rue) P+ [-A+3r3G + 2ry(2G —rpy)

or, a6,
+5r3 f2—r3fo—r3f cotbo+ (3fry — cOtho) ro — I'r,00]
d by O
—P,+——P =0 15
“an 2 g (15)

With the aid of the event horizon equation (10), we know that the coefficient
Ajis aninfinite limit of% type. By use of the L’ l85pital rule, we get the following
result

A2AG —ryy) +r24f24+2fr2ryy +r3

A= lim (G =) o T He
r—ry(Vo,60) I —rH

=234G, +4u(G —ruy) + 43 T2+ 4fryray

2

2r
zzr,ie,r+2r§,f2—#. (16)
H
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Now let us select the adjustable parametén Eqgs. (14) and (15) such that

A
ré = o +2r3(2G —rH,V)+2rﬁ f24+2fr3rn,

3G, +ry f2—
- K':H RY 4 2Gr2 +rff2—r2,, 17

which means the temperature of the horizon is
raGr +r3f2—rd,/ru
rd(1—2G)—rf f2 +rfw'
Such a parameter adjustment can make Egs. (14) and (15) reduce to

92 92 r 92
— P +2 P — (f+ﬁ> P1+[ f2-G,

(18)

or: or, oV, or, 00,

— fo— fcothg—(ry f cot@—
) o — (ru f + cotdp) +3 o

2

ro  2'Gg  THeo | O
- X
ra H M

Gr rmy —2G 0
+2[G,e+raf,v— r:"’—raf(eﬁ“va)} 2 =0, (19

and

92 32 r 82
P42 P2—2<f+ﬁ> P2+|:5er2+G,r

or: ar, oV, or, a0,
4G — 2r r
4+ 2 ZHY £, f cotfo+ (3fry —cot@o)#
Iy [iv]
2rZs Tuee | 0 MHo O
0 _H P+ 2 2 p =0 20
r3 rg | or. 2+ r3oor, ' (20)

Using Eg. (9), Egs. (19) and (20) can be recast into the following standard
wave equation near the horizon in an united form

” U +2 o v —2C o v +2C 9 w_o (21)
ar2 .oV, Lar.a0, Zor,
whereCy, C, will all be regarded as finite real constants,
r
Co= f 4 0 Ha
H
2 fho 2 ﬁ ~ TH.0
2C, = —ryf Gr— f@- fCOth—(er+COt90)—+ (2
H H H
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r2f +r
— BT Gy, —ruGy — 13 g+ 12 F(GTh + Py — 2G)]
(G—rH,v)rH
for w = Py, and
4G — 2
2C, =3ryf2— fo— f cotlo+ G, + r“”
H

2
Mo  THe THee
+(2frH —COth)—z—i——g— 2
ra rg ra

for ¥ = P,.

5. THERMAL RADIATION SPECTRUM
Now separating variable as follows
W = R(r,)0(6,) eV Hme
and substituting this into Eq. (21), one gets
e =10,
. (22)
R =2(w — Cy)R,

wherea is a real constant introduced in the separation variallgs; C, — AC;.
The solutions are

0 = e,
R = eZ(iw—Co)r*; RO (23)
The ingoing wave and the outgoing wave to Eq. (21) are
qjin — e—iwv*+im<p+>»0*,
(24)

\I"out — e—iwv*-&-im(p-ﬁ-)ﬁ* eZGa)—Co)r* (r > H)'
Near the event horizon, we have
1
r.~—In(r —rp).
£ o ( )

Clearly, the outgoing wawg,,(r > r i) is notanalytic atthe eventhorizon=ry,
but can be analytically extended from the outside of the hole into the inside of the
hole through the lower complexplane

(t—ry)— (ty —r)e’”
to

&/out — e—iwv*+im<p+)\(9* eZ(iw—Co)r* eirrCo/K eﬂw/K, (r <r H)~ (25)
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So the relative scattering probability of the outgoing wave at the horizon is
easily obtained

N 2
U = g zmelk (26)

Wout

According to the method suggested by Damour and Ruffini (1976) and de-
veloped by Sannan (1988), the thermal radiation Fermionic spectrum of Dirac
particles from the event horizon of the hole is given by

1

(N(w)) = /T 1 1’ (27)
with the Hawking temperature being
K
TH = E!
whose obvious expression is
1
Ty =
H 4y H

3
Mry +rda cos + (2rpa cosf — 1/2)(Q? + P2) — % + 5
(28)

X

Mry —ra cosfo + (2rna costp — 1)(Q%* + P?) — 41 —r3,
ré

It follows that the temperature depends not only on the time, but also on the
angled because it is determined by the surface gravita function ofv and6.

The temperature is in consistence with that derived while investigating the thermal
radiation of Klein—Gordon particles (Luo and Zhao, 1993; Zhtal,, 1995; Zhu
etal, 1994a).

6. CONCLUSIONS

Equations (10) and (18) give the location and the temperature of event horizon
of the hole, which depend not only on the advanced tinbeit also on the polar
angled. Equation (27) shows the thermal radiation spectrum of Dirac particles in
an arbitrarily rectilinearly accelerating Kinnersley black hole.

In conclusion, we have studied the Hawking radiation of Dirac particles in
an arbitrarily accelerating Kinnersley black hole whose mass and charges change
with time. The Chandrasekhar—Dirac equation cannot be decoupled in the most
general black hole background, however, under the generalized tortoise coordinate
transformation, the limiting form of its corresponding second-order equation takes
the standard form of wave equation near the event horizon, to which separation of
variables is possible.
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Both the location and the temperature of the event horizon of the accelerating
Kinnersley black hole depend on the time and the angle. They are just the same as
those obtained in the discussion on thermal radiation of Klein—-Gordon particles
in the same space-time.

APPENDIX: NEWMAN-PENROSE COEFFICIENTS

The complex null-tetradl, n, m, m} that satisfies the orthogonal conditions
| -n=—m-m = 1inthe Kinnersley black hole is chosen as

| =dv, n=Gdv—dr —r?fdg,
_—I’ _—r
V2 V2

It is not difficult to determine the twelve Newman—Penrose complex coeffi-
cients (Newman and Penrose, 1962) in the above null-tetrad as follows

m (do +i sinddg), m (d6 —i siné dy). (A1)

L - 1 G N f

K_)\’_U_G—O! ,O—r_i M—T; y—_G’r/Z, f——ﬂ—ﬁ,
coto f coto 1

o =— +—, B= , v=—[@2rG —r?G,)f +r%f, + Gyl
Zﬁr ,\/é ﬂ Zﬁr ﬁr [( ,I') ’ ,9]
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